386 research outputs found

    Translational bioinformatics applications in genome medicine

    Get PDF
    Although investigators using methodologies in bioinformatics have always been useful in genomic experimentation in analytic, engineering, and infrastructure support roles, only recently have bioinformaticians been able to have a primary scientific role in asking and answering questions on human health and disease. Here, I argue that this shift in role towards asking questions in medicine is now the next step needed for the field of bioinformatics. I outline four reasons why bioinformaticians are newly enabled to drive the questions in primary medical discovery: public availability of data, intersection of data across experiments, commoditization of methods, and streamlined validation. I also list four recommendations for bioinformaticians wishing to get more involved in translational research

    Prototype of running clinical trials in an untrustworthy environment using blockchain.

    Get PDF
    Monitoring and ensuring the integrity of data within the clinical trial process is currently not always feasible with the current research system. We propose a blockchain-based system to make data collected in the clinical trial process immutable, traceable, and potentially more trustworthy. We use raw data from a real completed clinical trial, simulate the trial onto a proof of concept web portal service, and test its resilience to data tampering. We also assess its prospects to provide a traceable and useful audit trail of trial data for regulators, and a flexible service for all members within the clinical trials network. We also improve the way adverse events are currently reported. In conclusion, we advocate that this service could offer an improvement in clinical trial data management, and could bolster trust in the clinical research process and the ease at which regulators can oversee trials

    Exploring genomic medicine using integrative biology

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2004.Includes bibliographical references (p. 215-227).Instead of focusing on the cell, or the genotype, or on any single measurement modality, using integrative biology allows us to think holistically and horizontally. A disease like diabetes can lead to myocardial infarction, nephropathy, and neuropathy; to study diabetes in genomic medicine would require reasoning from a disease to all its various complications to the genome and back. I am studying the process of intersecting nearly-comprehensive data sets in molecular biology, across three representative modalities (microarrays, RNAi and quantitative trait loci) out of the more than 30 available today. This is difficult because the semantics and context of each experiment performed becomes more important, necessitating a detailed knowledge about the biological domain. I addressed this problem by using all public microarray data from NIH, unifying 50 million expression measurements with standard gene identifiers and representing the experimental context of each using the Unified Medical Language System, a vocabulary of over 1 million concepts. I created an automated system to join data sets related by experimental context.(cont.) I evaluated this system by finding genes significantly involved in multiple experiments directly and indirectly related to diabetes and adipogenesis and found genes known to be involved in these diseases and processes. As a model first step into integrative biology, I then took known quantitative trait loci in the rat involved in glucose metabolism and build an expert system to explain possible biological mechanisms for these genetic data using the modeled genomic data. The system I have created can link diseases from the ICD-9 billing code level down to the genetic, genomic, and molecular level. In a sense, this is the first automated system built to study the new field of genomic medicine.by Atul Janardhan Butte.Ph.D

    Quantifying the relationship between co-expression, co-regulation and gene function

    Get PDF
    BACKGROUND: It is thought that genes with similar patterns of mRNA expression and genes with similar functions are likely to be regulated via the same mechanisms. It has been difficult to quantitatively test these hypotheses on a large scale because there has been no general way of determining whether genes share a common regulatory mechanism. Here we use data from a recent genome wide binding analysis in combination with mRNA expression data and existing functional annotations to quantify the likelihood that genes with varying degrees of similarity in mRNA expression profile or function will be bound by a common transcription factor. RESULTS: Genes with strongly correlated mRNA expression profiles are more likely to have their promoter regions bound by a common transcription factor. This effect is present only at relatively high levels of expression similarity. In order for two genes to have a greater than 50% chance of sharing a common transcription factor binder, the correlation between their expression profiles (across the 611 microarrays used in our study) must be greater than 0.84. Genes with similar functional annotations are also more likely to be bound by a common transcription factor. Combining mRNA expression data with functional annotation results in a better predictive model than using either data source alone. CONCLUSIONS: We demonstrate how mRNA expression data and functional annotations can be used together to estimate the probability that genes share a common regulatory mechanism. Existing microarray data and known functional annotations are sufficient to identify only a relatively small percentage of co-regulated genes

    Coanalysis of GWAS with eQTLs reveals disease-tissue associations.

    Get PDF
    Expression quantitative trait loci (eQTL), or genetic variants associated with changes in gene expression, have the potential to assist in interpreting results of genome-wide association studies (GWAS). eQTLs also have varying degrees of tissue specificity. By correlating the statistical significance of eQTLs mapped in various tissue types to their odds ratios reported in a large GWAS by the Wellcome Trust Case Control Consortium (WTCCC), we discovered that there is a significant association between diseases studied genetically and their relevant tissues. This suggests that eQTL data sets can be used to determine tissues that play a role in the pathogenesis of a disease, thereby highlighting these tissue types for further post-GWAS functional studies
    • …
    corecore